Geodetic Detection of Active Deformation in the New Madrid Seismic Zone

Bob Smalley, Mike Ellis, John Paul

Center for Earthquake Research and Information

The University of Memphis

Continuous GPS

network for New Madrid Design

Local scale

Mid-scale

Regional scale

gama_zooom

Comparison with other results

- processing same data
 - -with same program

- Vectors agree well
 - Statistics straddle

significant/not

Strain-rate sensitivity thresholds vs period

GPS and INSAR detection thresholds for 10 km baselines, assuming 2 mm and 2 cm displacement resolution for GPS and INSAR,

http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.htm

respectively (horizontal).

Strain rates in stable plate interiors

bounded between

3 x 10²⁰ - 10¹⁹ / sec and 10¹⁷ / sec.

Gordon (1998)

Processing "noisy" data

Law of large numbers (statistics) –

Large amounts of "bad" data will give good average

Detecting small signal buried in larger signal No noise

Detecting small signal buried in larger signal With noise

Continuous GPS

- Stable monuments -

Continuous GPS

- Stable

What we need ----

- Longer time series providing more accurate velocities

- Larger number stations providing higher

Interseismic vs. Postseismic "relaxation"

Shape determined by fault geometry

Velocities scale
linearly with
interseismic rate
and slip in
earthquake

-savage interseismic ---back-slip deformation 0.6 <u>E</u> Š 0.4 0.2 -500 km pollitz postseismic. viscoelastic response deformation model (mm) 1000 km

Who "wins" depends on relative magnitudes at any given time

Conclusions:

- GPS at (just past) threshold to detect strain signals

- GPS can provide important, but not dominant component to seismic hazard estimation

- GPS can provide kinematic data to test dynamic models for what drives seismicity